
www.manaraa.com

Klaim:a Kernel Language for Agents Interaction and MobilityRocco De Nicola1 GianLuigi Ferrari2 Rosario Pugliese11Dipartimento di Sistemi e Informatica, Universit�a di Firenzee-mail: fdenicola,puglieseg@dsi2.dsi.unifi.it2Dipartimento di Informatica, Universit�a di Pisae-mail: giangi@di.unipi.itAbstractWe investigate the issue of designing a kernel programming language for MobileComputing and describe Klaim, a language that supports a programming paradigmwhere processes, like data, can be moved from one computing environment to an-other. The language consists of a core Linda with multiple tuple spaces and of aset of operators for building processes. Klaim naturally supports programming withexplicit localities. Localities are �rst-class data (they can be manipulated like anyother data), but the language provides coordination mechanisms to control the inter-action protocols among located processes. The formal operational semantics is usefulfor discussing the design of the language and provides guidelines for implementations.Klaim is equipped with a type system that statically checks access rights violations ofmobile agents. Types are used to describe the intentions (read, write, execute, etc.) ofprocesses in relation to the various localities. The type system is used to determine theoperations that processes want to perform at each locality, and to check whether theycomply with the declared intentions and whether they have the necessary rights toperform the intended operations at the speci�c localities. Via a series of examples, weshow that many mobile code programming paradigms can be naturally implementedin our kernel language. We also present a prototype implementation ofKlaim in Java.Keywords: Programming Languages, Mobile Code Languages, Semantics of Program-ming Languages, Language Design, Coordination Models.
1

www.manaraa.com

1 IntroductionNetworking has changed computers from isolated data processors into powerful commu-nication and elaboration devices. The terms global computers and global informationstructures have recently been used to identify architectures of this kind and applicationsover them [8]. The World{Wide Web (WWW) is the best known example of an appli-cation geographically distributed over a collection of processors and networks. Globalstructures/computers are rapidly evolving towards programmability; again, an illustra-tive example is the WWW. One could easily imagine applications with programs runningat di�erent sites and needing continuous interactions or applications that have to takedecisions according to information retrieved from the global environment.This new scenario has called for new programming languages and paradigms thatsupport migratory (mobile) applications. For example, Java [3] permits local executionsof self{contained programs downloaded from other sites. Similarly, Facile [23] supportsmobility of programs by allowing processes to be transmitted in communications. Obliq[7] is a programming language with a static scoping discipline where mobile processesmaintain their connections when they move from one site to the other. Other examplesof languages supporting forms of mobility are CML [38] and Telescript [41].From a theoretical perspective, much research has addressed mobility starting from thede�nition of �{calculus [32], which has been used as the basis for designing the concurrent,object oriented, programming language PICT [33]. Indeed, an abstract semantic frame-work that would allow one to formalize and understand global programming languages isclearly required. Such a semantic framework may be the formal basis to discuss contro-versial design/implementation issues (e.g. the scoping discipline of mobile processes) andprovide support for mechanical reasoning about global programs.A key issue when designing a language for network programming is security, e.g. pri-vacy and integrity of data. It is important to prevent malicious agents from accessingprivate information or modifying private data. Tools are thus needed that enable sitesreceiving mobile agents for execution to set demands and limitations to ensure that theagents will not violate privacy or jeopardize the integrity of the information. Similarly,mobile agents need tools to ensure that their execution at other sites will not disruptthem or compromise their security. Languages for mobile agents often rely on policies(both at compilation and run{time) that over-restrict privileges and capabilities of mobileagents (e.g. Java [3]). This unnecessarily reduces the expressive power and capabilities ofthe agents. Moreover, there is no guarantee that certain desired security properties areenforced by the language implementation.This paper presents a kernel programming language, Klaim (Kernel Language forAgents Interaction and Mobility), for describing mobile agents and their interaction strate-gies. We introduce basic concepts and linguistic primitives together with a formal opera-2

www.manaraa.com

tional semantics. This is followed by a discussion of the pragmatics of the language andof a prototype implementation.The distinguishing features of our approach are the explicit use of localities for accessingdata or computational resources and the presence of a simple type system to control accessrights.The choice of Klaim's primitives was heavily in
uenced by Process Algebras [25, 30]and Linda [20, 10]. Indeed, our language can be seen as an asynchronous higher{orderprocess calculus whose basic actions are the original Linda primitives enriched with explicitinformation about the location of the nodes where processes and tuples are allocated.Explicit localities enable the programmer to distribute and retrieve data and processesto and from the sites of a net and to structure the tuple space as multiple, located spaces.Moreover, localities, considered as �rst{order data, can be dynamically created and com-municated over the network. The overall outcome is a powerful programming formalismthat, for example, can easily be used to model encapsulation. In fact, an encapsulatedmodule can be implemented as a tuple space at a private locality, and this ensures con-trolled accesses to data.The separation of the logical distribution of processes and their physical mappings overthe net leads to the sharing of the control between programmers and a net coordinator.The actual coordination language is designed to handle all issues related to the physicaldistribution of processes. Coordinators have complete control over changes of con�gurationof the network that may be due to addition/deletion of software components and sites, orto transmission of programs and of sites references.The actual structuring in terms of processes and coordinators provides a clean abstrac-tion device for global programming languages and is instrumental for studying migratoryapplications and for understanding the extent of con�guration decisions before carryingout the actual implementation. This will be illustrated by analyzing the e�ects of choosingspeci�c scoping disciplines for accessing tuple spaces.To take security issues into account, we extend Klaim processes and coordinatorswith a simple type system that can be used to statically enforce security properties. Moreprecisely, the type system permits one to check whether the operations Klaim processesintend to perform over the sites of a net really do comply with their access rights.We illustrate the pragmatics of the language by means of a number of programmingexamples which demonstrate how well established programming paradigms for mobileapplications can be naturally programmed in Klaim. The untyped version of Klaim hasbeen implemented as a set of Java packages.The rest of the paper is organized as follows. Sections 2 and 3 introduce the syntax andthe operational semantics of Klaim, respectively. In Section 4 we present a type systemfor inferring process types and a methodology for controlling their access rights. This isfollowed by a discussion of the language pragmatics in Section 5, and by the description of3

www.manaraa.com

the prototype implementation in Section 6. In the last section, future research is discussed.Comments about the relationships of Klaim with other languages and about alternativedesign choices are scattered along the paper as remarks.Preliminary presentations of the Klaim language can be found in [15, 16].2 Klaim: Syntax and Informal SemanticsKlaim consists of a core Linda with multiple tuple spaces and of a set of operators,borrowed from Milner's CCS [30], for building processes. The distinguishing feature isthat tuples and operations over them are located at speci�c sites of a net. We start thissection by summarizing the main features of Linda (the interested reader is referred to,e.g., [22, 11, 10] for more details). Then, we present the syntax of Klaim. The processalgebraic operators will be brie
y presented in the subsection that contains the syntax ofKlaim processes.2.1 An overview of LindaLinda is a coordination language that relies on an asynchronous and associative commu-nication mechanism based on a shared global environment called Tuple Space (TS). Atuple space is a collection (formally a multiset) of tuples, where a tuple is a sequence ofactual �elds, i.e. expressions or values, and formal �elds, i.e. variables. Pattern{matchingis used to select tuples in a TS. Two tuples match if they have the same number of �eldsand corresponding �elds have matching values or variables. Variables match any value ofthe same type, and two values match only if they are identical.Linda provides just four primitives for manipulating tuples. Two (non{blocking) oper-ations, out(t) and eval(t), permit tuples to be added to a TS. The operation out(t) addsthe tuple resulting from the evaluation of t to a TS. The operation eval(t) di�ers fromout(t) because t is �rst added to the TS and then a new concurrent process is createdfor evaluating the tuple; this is not available for matching until its evaluation has beencompleted. Two (possibly blocking) operations, in(t) and read(t), permit tuples to beaccessed in the TS. The operation in(t) evaluates t and looks for a matching tuple t0 inthe TS. Whenever t0 is found, it is removed from the TS. The corresponding values of t0are then assigned to the variables of t and the operation terminates. If no matching tupleis found, the operation is suspended until one is available. The operation read(t) di�ersfrom in(t) because the tuple t0 selected by pattern{matching is not removed from the TS.Nondeterminism is inherent in the de�nition of Linda primitives. It arises when morein/read operations are suspended while waiting for a tuple. When such a tuple becomesavailable, only one of the suspended operations is nondeterministically selected to proceed.Similarly, when an in/read operation has more than one matching tuple one is arbitrarilychosen. 4

www.manaraa.com

The Linda programming paradigm is known as Generative Communication [20]. In-deed, once a tuple is added to a TS (generated), its life{time is independent of the producerprocess's life{time.In the original proposal [20] two predicative (non{blocking) forms, inp and readp, werealso part of the language. They yield true or false depending on whether the TS containsa tuple matching their argument. When returning true they retrieve/remove the matchingtuple. We did not consider these predicates because they are functional duplicates of theirnon{predicative counterparts and are di�cult to implement in a distributed environment.They may require expensive checks and synchronizations over entire tuple spaces [29].The Linda asynchronous communication model allows programmers to explicitly con-trol interactions among processes via shared data and to use the same set of primitivesboth for data manipulation and for process synchronization. This has the advantage of ren-dering explicit all the interactions of a program with its environment. The original Lindaprimitives are, however, not completely adequate for programming distributed systems.For example, data protection and security, which are key features of mobile applications,are problematic because the Linda communication model cannot guarantee data privacy.Also, modular programming disciplines are awkward to follow in practice as there is noway to guarantee that tuples coming from di�erent contexts are not mixed up when twomodules are put together. Multiple tuple spaces [21] are a �rst step toward the solution ofthese problems. In this paper we perform a further step by adding structure to multipletuple spaces and allowing explicit manipulation of localities and locality names.2.2 Klaim ProcessesHereafter, we shall exploit the syntactic categories listed below; all of them are followedby the symbols we will use (sometimes with indices) to refer to their elements.� S (s) is a set of sites (or physical localities). A site can be considered as the addressof a node where processes and tuple spaces are allocated.� Loc (l) is a set of (logical) localities. A locality may be thought of as the symbolicname for a site. Localities permit structuring programs over distributed environ-ments while ignoring their precise allocations. A distinguished locality self (2 Loc)is assumed. Programs can use self to refer to their execution site.� VLoc (u) is a set of locality variables.� Val (v) is a set of basic values.� Var (x) is a set of value variables.� Exp (e) is the category of value expressions. These are built up from values andvalue variables, by using a set of operators (not speci�ed here).5

www.manaraa.com

� 	 (A) is a set of parameterized process identi�ers. Parameters can be of threedi�erent types: process, locality and value; for the sake of simplicity, we �x thisordering for the formal parameters of any process identi�er.� � (X) is a set of process variables.For simplicity, we will use ` to denote both localities and locality variables. Moreover,èwill indicate sequences of localities and fèg the set of localities in è. A similar notationwill also be used for other kinds of sequences.We will use the standard notation e[e0=x] to indicate the substitution of the valueexpression e0 for the variable x in e; e[ee0=ex] will denote the simultaneous substitution ofeach x 2 ex with the corresponding e0 2 ee0 in e.Tuples are sequences of actual �elds (i.e. expressions, processes, localities or localityvariables) and formal �elds; these are denoted by \! var", where var is a generic variable.We shall use fields(t) to denote the set of �elds of t.The Linda operations to generate tuples (out), to spawn a new process (eval), to readtuples (read), and to remove tuples (in) are located, e.g. the operation out(t)@` is used toplace the tuple t in the tuple space located at `. Our primitives generalize Linda's originalones. We have a modi�ed eval primitive; it has processes as arguments rather than tuples,and thus permits mobile agents to be programmed. As will be clari�ed later (Section 3),action eval(out(t)@`:nil)@` can be used to simulate the \expected" behaviour of actioneval(t)@`. New sites are created through the pre�x newloc(u). This operation creates a\fresh" site that can be accessed via the locality variable u.The operators for building processes are borrowed from Milner's CCS [30]. They arecommonly used in Process Algebras and correspond to basic notions. Namely, nil standsfor the process that cannot perform any action, a:P stands for the process that �rstexecutes action a and then behaves like P , P1jP2 stands for the parallel composition of P1and P2, and P1+P2 stands for the nondeterministic composition of P1 and P2.Klaim terms are given by the abstract syntax in Table 1. As a matter of notation, inthe following we often shall write a instead of a:nil.Variables occurring in Klaim process terms can be bound by pre�xes. More precisely,pre�xes in(t)@`: and read(t)@`: act as binders for variables in the formal �elds of t.Pre�x newloc(u): binds the locality variable u.Process identi�ers are used in recursive process de�nitions. It is assumed that eachprocess identi�er A has a single de�ning equation A(eX; eu; ex) def= P . All free (value, processand locality) variables in P are contained in f eX; eu; exg and all occurrences of processidenti�ers in P are guarded (i.e. each process identi�er occurs within the scope of ablocking in/read pre�x).A process is a term without free variables; localities occurring in processes are consid-ered as constants. In the next section, we will see that they are names whose meaning6

www.manaraa.com

P ::= nil (null process)��� a:P (action pre�xing)��� P1 j P2 (parallel composition)��� P1+P2 (choice)��� X (process variable)��� Ah eP ; è; eei (process invocation)a ::= out(t)@` ��� in(t)@` ��� read(t)@` ��� eval(P)@` ��� newloc(u)t ::= e ��� P ��� ` ��� !x ��� !X ��� !u ��� t1; t2Table 1: Processes Syntaxis de�ned (i.e. mapped onto sites) by coordinators. Both processes and localities are�rst{class data and can be manipulated and generated like any other data occurring intuples. Processes have higher{order capabilities, in that they can be exchanged in com-munications.2.3 Klaim NetsCoordination appears to be a key concept for modelling and designing heterogeneous, dis-tributed, open ended systems. It applies typically to systems consisting of a large numberof software components, programmed independently, possibly with di�erent programminglanguages, which may change their con�guration during execution. Coordination lan-guages provide the primitive for de�ning con�gurations and interaction protocols of setsof software agents. Systems are designed and developed in a structured way, startingfrom the basic computational components and adding suitable software modules calledcoordinators. This approach increases the potential reuse of both software agents andcoordinators at the cost of acceptable overheads.In this section we introduce the Klaim coordination language. It is designed to han-dle all the issues related to the physical distribution of processes. Moreover, it controlschanges of network con�guration. Changes may be due to the addition/deletion of softwarecomponents and sites, or to the transmission of programs and resources.Given a �nite set of sites, a Klaim net is a set of nodes. A Klaim node is a triple(s; P; �) where s is a site and � is the allocation environment, i.e. a (partial) function fromLoc to S. Hereafter E will denote the set of environments, � the empty environment, and[s=l] the environment that maps the locality l to the site s. Processes at each site canpotentially access any other site of the net; however, site visibility is (locally) controllablevia the allocation environment: a site s0 is visible at the node (s; P; �) only if s0 belongs to7

www.manaraa.com

N ::= s ::� P (node)��� N1 k N2 (net composition)Table 2: Nets Syntaxthe image of �. Finally, we introduce an operation to stratify environments. If �1; �2 2 E ,then �1 � �2 is the environment de�ned by:�1 � �2 (l) = (�1(l) if �(l) is de�ned�2(l) otherwiseIn �1 � �2 , �1 is the inner environment and �2 is the outer environment.The abstract syntax for Klaim nets is given by the grammar in Table 2.Given a net N , we assume the existence of a function st which returns the sites of N .The composition N1 k N2 is de�ned only if st(N1) \ st(N2) = ;, thus we can consider anet just as a set of nodes. We say that a net N is well{formed if whenever s ::� P is a nodeof N then �(self) = s and the image of � is included in st(N). We will only considerwell{formed nets. To lighten notations, the allocation environments will not report thebinding for self.Remark 2.1 In the present formulation of Klaim, located tuple spaces have no hierar-chical structure, i.e. located tuple spaces are not nested. However, the nesting of locatedtuple spaces can easily be modelled. It su�ces to extend Klaim coordination languagewith a combinator to allocate a complete net. Hence, a hierarchical net would be written:s ::� [N]where � is the allocation environment that now returns either localities or sequences ofsites. The idea is that s is the site where the net N is allocated. Site s and its environment� can then be used to control all interactions between N and other nets.Allocated nets are very similar in spirit to the multiple ambients of Cardelli and Gordon[9]. A complete investigation of allocated nets is beyond the scope of the present paperand will be the subject of a further work.3 Operational SemanticsThe two syntactic levels of Klaim are re
ected at the semantic level. The operationalsemantics of Klaim is given in the SOS style [35] and proceeds in two steps. The �rststep de�nes the symbolic semantics that speci�es parts of process commitments, i.e. thecontrol on localities and the e�ects of the actions on the tuple spaces. The full descriptionof process behaviours is given in the second step, which packages processes and data intoa net. 8

www.manaraa.com

out(t)@`:P s(t)@`���!� P eval(Q)@`:P e(Q)@`���!� Pin(t)@`:P i(t)@`��!� P read(t)@`:P r(t)@`���!� Pnewloc(u):P n(u)@self�����!� PP ��!� P 0P+Q ��!� P 0 P ��!� P 0Q+P ��!� P 0P ��!� P 0P j Q ��!� P 0 j Q P ��!� P 0Q j P ��!� Q j P 0P ��!�0 P 0Pf�g ����!�0 � � P 0f�g P [eP= eX; è=eu; ee=ex] ��!� P 0Ah eP ; è; eei ��!� P 0 A(eX; eu; ex) def= PTable 3: The Structural Rules of Symbolic Semantics3.1 Process SemanticsThe labelled transition system for processes describes the possible evolutions of Klaimprocesses without providing the actual allocation of processes and tuple spaces. For thisreason, the corresponding operational semantics is called symbolic in that neither valueand locality expressions nor tuples are evaluated.To describe the e�ects of the evaluation of processes which are placed within tuples�elds, we introduce the auxiliary term Pf�g which indicates the process P packaged withthe allocation of localities speci�ed by �; the mapping � is an evaluation environment andPf�g is a closure. For the sake of simplicity, we will use P to range over closures as well.The structural rules of the symbolic semantics are reported in Table 3. The transitionP ��!� P 0describes the evolution to P 0 of the process P . The label of the transition h�; �i provides anabstract description of the activities performed in the evolution. For instance, � = s(t)@`describes the output (sending) of tuple t in the tuple space speci�ed by `. Similarly,� = n(u)@self can be thought of as the request for binding a fresh site to the variable u.The environment � records the local bindings that must be taken into account to evaluate�. Our use of allocation environments in the transition labels is similar to the use ofBoolean expressions in the operational framework of [24].9

www.manaraa.com

T [[e]]� = E [[e]]T [[P]]� = Pf�gT [[`]]� = �(`)T [[t1; t2]]� = T [[t1]]�; T [[t2]]� T [[!x]]� = !xT [[!X]]� = !XT [[!u]]� = !uTable 4: Tuple Evaluation Functionmatch(v; v) match(P; P) match(s; s)match(!x; v) match(!X;P) match(!u; s)match(et1; et2)match(et2; et1) match(et1; et2) match(et3; et4)match((et1; et3); (et2; et4))Table 5: The Matching Rules3.2 Net SemanticsFollowing [4, 31] the operational semantics of Klaim coordination language is de�nedby a structural congruence and a reduction relation. The structural congruence incorpo-rates the basic semantics of net parallel composition, while reduction describes the basiccomputational paradigm of interactions among processes inside a net.Nets are de�ned up to a structural congruence �. This is the smallest congruence suchthat k is associative and commutative.To avoid cumbersome notations, we use ` to denote localities, locality variables andsites, and assume that allocation environments are extended to sites but for these theyact as the identity function. The operational semantics of nets exploits an evaluationmechanism for tuples, and a pattern{matching to select tuples in a tuple space. Theevaluation function for tuples, T [[]], exploits the allocation environment to resolve localitynames and relies on an evaluation mechanism, E [[]], for closed expressions (i.e. expressionswithout free variables). T [[]] is inductively de�ned over the syntax of tuples by the rules inTable 4, where we use E [[e]] to denote the value of the closed expression e; the evaluationof a process, say T [[P]]�, yields a process closure, i.e. Pf�g.The rules de�ning the pattern{matching predicate are reported in Table 5.As in [18, 37], we model tuples as processes and we introduce auxiliary processes todenote evaluated tuples, referred to as et. ThusKlaim syntax is extended with the processout(et) whose symbolic semantics is expressed by the following structural ruleout(et) o(et)@self�����!� nil:Moreover, we use sites alike localities and locality variables.The reduction rules of nets (rules in Table 6, and rules (11) and (12)) clearly distinguish10

www.manaraa.com

between local and remote operations performed by located processes and provide a formalmodel to guide the implementation.The evaluation of an out operation modi�es a tuple space. Rule (1) adds a new tupleto the local tuple space of the process. Rule (2), on the other hand, adds a new tupleto the remote tuple space located at `2. In the latter rule, the evaluation of the tuple tdepends on the allocation environment ���1 . This corresponds to having a static scopingdiscipline for the remote generation of tuples. Moreover, if the tuple t contains a �eldwith a process, the corresponding �eld of the evaluated tuple et contains a closure. Hence,processes in a tuple are transmitted together with their local allocation environment.A dynamic scoping strategy is adopted for the eval operation, described by rules (3)and (4). In this case the process spawned in the remote node is transmitted withoutthe local allocation environment, and its execution is in
uenced by the remote allocationenvironment �2.For the communication operations in and read note that in modi�es the tuple space(see rules (5) and (6)) while read does not (in the conclusions of rules (7) and (8) the tuplespace encompassed within process P2 is left unchanged by process evolution). Obviously,we have to distinguish between local rules ((5) and (7)) and remote rules ((6) and (8)).Let us consider rule (5) (rules (6), (7) and (8) can be interpreted similarly). It saysthat a process can perform an in action at the local tuple space by synchronizing witha process which represents a matching tuple. The result of this synchronization is thatthe tuple is consumed, i.e. the corresponding process becomes nil, and its values are usedto replace the corresponding (free) variables of the process which has performed the inoperation.Finally, rule (9) describes the asynchronous evolution of subcomponents of a node.Rules (1){(9) may modify the structure of the nodes of the net but they cannot intro-duce new localities. The creation of a new node is described by rule (10). The environmentof a new node is obtained from that of the creating one (with the obvious update for theself locality). The underlying idea is that the new node inherits all the knowledge aboutlocalities of the creating node.Remark 3.1 Obviously, other design choices could have been made. An alternative for-mulation of the rule for the creation of a new node isP n(u)@self�����!�0 P 0 s0 2 S; s0 freshs ::� P �! s ::� P 0[s0=u] k s0 :: [s0=self]�� nilThe rationale behind this choice (adopted in [39]) is that any new node has no knowledgeof the rest of the net. 11

www.manaraa.com

P s(t)@`���!�0 P 0 s = �0 � � (`) et = T [[t]] �0��s ::� P �! s ::� P 0 j out(et) (1)P1 s(t)@`���!� P 01 s2 = � � �1 (`) et = T [[t]] ���1s1 ::�1 P1 k s2 ::�2 P2 �! s1 ::�1 P 01 k s2 ::�2 P2 j out(et) (2)P e(Q)@`���!�0 P 0 s = �0 � � (`)s ::� P �! s ::� Q j P 0 (3)P1 e(Q)@`���!� P 01 s2 = � � �1 (`)s1 ::�1 P1 k s2 ::�2 P2 �! s1 ::�1 P 01 k s2 ::�2 Q j P2 (4)P1 i(t)@`��!�0 P 01 s = �0 � � (`) P2 o(et)@self�����!� P 02 match(T [[t]] �0�� ; et)s ::� P1jP2 �! s ::� P 01[et=T [[t]] �0��]jP 02 (5)P1 i(t)@`��!� P 01 s2 = � � �1 (`) P2 o(et)@self�����!� P 02 match(T [[t]] ���1 ; et)s1 ::�1 P1 k s2 ::�2 P2 �! s1 ::�1 P 01[et=T [[t]] ���1] k s2 ::�2 P 02 (6)P1 r(t)@`���!�0 P 01 s = �0 � � (`) P2 o(et)@self�����!� P 02 match(T [[t]] �0�� ; et)s ::� P1jP2 �! s ::� P 01[et=T [[t]] �0��]jP2 (7)P1 r(t)@`���!� P 01 s2 = � � �1 (`) P2 o(et)@self�����!� P 02 match(T [[t]] ���1 ; et)s1 ::�1 P1 k s2 ::�2 P2 �! s1 ::�1 P 01[et=T [[t]] ���1] k s2 ::�2 P2 (8)s ::� P1 �! s ::� P 01s ::� P1jP2 �! s ::� P 01jP2 (9)P n(u)@self�����!�0 P 0 s0 2 S : s0 6= ss ::� P �! s ::� P 0[s0=u] k s0 :: [s0=self]�� nil (10)Table 6: The Reduction Relation: Process Interactions12

www.manaraa.com

To conclude the description of the reduction relation, we have to say how reductionbehaves in presence of the operator of parallel composition of nets. Since the compositionN1 k N2 is de�ned only if st(N1) \ st(N2) = ;, we have:N1 �! N 01 st(N 01) \ st(N2) = ;N1 k N2 �! N 01 k N2 (11)Finally, we have to say how reduction behaves with respect to structural congruence.We have: N � N1 N1 �! N2 N2 � N 0N �! N 0 (12)Remark 3.2 Despite the di�erent programming paradigms, there are interesting similar-ities between Telescript and Klaim. General Magic Telescript [41] is an object orientedlanguage designed for network programming. A central concept in Telescript is the con-cept of place, which corresponds to our sites. A place can be thought of as the stationaryprocess that can accept mobile agents. Agents travel from one place to another by invok-ing the go operation. This operation requires the agent's destination place (the ticket)and the route of the trip. The main advantage of Klaim's approach is that the \possi-ble stationary processes" can be programmed via the notion of locality without requiringthe precise physical distribution of places. In other words, localities provide a powerfulabstraction mechanism over sites. There are also some analogies between our eval/outoperations and Telescript go operation: both allow mobile agents to be programmed.Remark 3.3 Several theoretical works in non{interleaving semantics of process calculihave adopted the notion of locality to capture logical distribution of processes (e.g. [6],[13] and the references therein). The basic idea of these approaches is to allow the obser-vation of actions together with the locations (access paths) where they take place. In ourapproach, localities are not used as a tool for observing the distribution of processes butrather as a programming device to structure and control the distribution of processes anddata. The formal models presented in [2, 19] are closely related to the work presented here.These approaches deal with mobility much like �{calculus (channel and locality names canbe passed in interactions). Signi�cantly, localities in Klaim can be used to simulate theprivate name passing and the scope extrusion mechanisms of �{calculus, so that a naturalencoding of (asynchronous) �{calculus in Klaim can be easily programmed.3.3 Scoping and MobilityThe role of a net is to allocate and coordinate a set of processes. Hence, beyond formallydescribing all the issues related to physical distribution, net semantics is essential to study13

www.manaraa.com

migratory applications and for understanding design decisions before carrying out an im-plementation. This can be better understood by analyzing the e�ects of choosing speci�cscoping disciplines on mobile agents when accessing tuple spaces.The operational semantics of nets adopts a static scoping discipline for the evaluationof out operations. On the other hand, a dynamic scope discipline is adopted for remoteeval operations: the meaning of localities used by a process spawned at a remote sitedepends on the remote allocation environment.Indeed, whenever a process P located at the site s1 wishes to insert a tuple t intothe remote tuple space located at s2, the local environment of P , namely �1, is used forevaluating t. A dynamic scoping discipline for out can be obtained by replacing rule (2)in Table 6 with the following:P1 s(t)@`��!� P 01 s2 = � � �1 (`) et = T [[t]]�2s1 ::�1 P1 k s2 ::�2 P2 �! s1 ::�1 P 01 k s2 ::�2 P2 j out(et)where the remote environment �2 is used for evaluating t.Remark 3.4 Alternatively, we could also use the rule:P1 s(t)@`��!� P 01 s2 = � � �1 (`)s1 ::�1 P1 k s2 ::�2 P2 �! s1 ::�1 P 01 k s2 ::�2 P2 j out(t)@self:nilNamely, a process is placed in s2 which will eventually take care of the local evaluation ofthe tuple t.Dynamic scoping for out can be also simulated (without any modi�cation to the op-erational rules for nets) by writing eval(out(t)@self)@`:P instead of out(t)@`:P . Theexecution of eval spawns process out(t)@self at site s2 (resulting from the evaluation of`) and, therefore, t is evaluated by using the local environment at s2.When process P located at s1 wants to spawn a process Q at the remote site s2, adynamic scoping discipline is followed. The local environment �2 is used for giving meaningto the localities which may be referred in Q. A static scoping discipline for eval can beobtained by spawning Qf�1g rather than Q. More precisely, rule (4) in Table 6 could bereplaced by the following:P1 e(Q)@`���!� P 01 s2 = � � �1 (`) Q0 = Qf�1gs1 ::�1 P1 k s2 ::�2 P2 �! s1 ::�1 P 01 k s2 ::�2 Q0 j P214

www.manaraa.com

In this case the remote spawning of process Q consists in transmitting Q packaged withits allocation environment �1.Again, eval with static scoping can be simulated via the primitives of the lan-guage, in particular, by passing processes (and then closures) as �elds of tuples andusing private localities to store intermediate results. With this in mind, we can writenewloc(u):out(Q)@u:in(!X)@u:eval(X)@`:P instead of eval(Q)@`:P . When eval(X)is executed at site s2, X is bound to the process Q packaged with �1. Hence, a closurerather than a plain process is activated at site s2, which is di�erent from the case ofeval(Q).4 Typing and SecuritySecurity, e.g. privacy and integrity of data, is a key issue in the development of mobileapplications. One can easily imagine malicious mobile agents attempting to access privateinformation. A server receiving a mobile agent for execution thus needs to impose strongrequirements to ensure that the agent will not violate privacy and jeopardize the integrityof the information. Similarly, mobile agents must ensure that their execution at the serversite will not damage them or compromise their security.In this section we introduce a type system for Klaim and show how it can be usedto statically enforce security properties. More precisely, the type system permits one tocheck whether the operations Klaim processes intend to perform over the sites of a netreally do comply with their access rights.The typing analysis of Klaim programs is structured into two phases re
ecting thetwo{level syntax of Klaim. The �rst phase deduces process intentions (read, write, with-draw, execute, . . .) in relation to the various localities they are willing to interact withor they want to migrate to. This is done by an inference system which assigns types toprocesses, and also, partially, checks whether these behave in accordance with their de-clared intentions. The second phase of the typing analysis checks whether each processhas the necessary rights to perform the intended operations, i.e. it does not violate theaccess rights as granted by the net coordinator.4.1 TypesWe will use fr; i; o; e; ng to indicate the set of process capabilities; r denotes the capabilityto execute a read operation, i the capability to execute an in operation, and so on.Polarities are non{empty subsets of fr; i; o; e; ng. We use �, ranged over by � (whichmay be indexed), to denote the set of all polarities. Polarities are used di�erently byprocesses and nets. The polarity of a locality or of a locality variable, say `, within aprocess contains information about the operations the process intends to perform at `.In a net, on the other hand, polarities are used to �x access rights. Type checking will15

www.manaraa.com

guarantee that only intentions that match access rights, as granted by the coordinator,are allowed.Orderings between polarities can be used to model hierarchies of access rights. Obvi-ously, if a process is able to perform an in operation at ` then it is also able to performa read at `. Also, type checking should ensure that, if a process has capabilities �, thenit can execute all operations that require capabilities smaller (greater, in the ordering v�de�ned below) than �. These intuitions lead to the subpolarity relation, obtained as theleast re
exive and transitive relation induced by the following rules:fig v� frg �1 � �2�2 v� �1 �1 v� �01 �2 v� �02(�1 [�2) v� (�01 [�02)One could think of associating a polarity with each process or with each locality tocompletely characterize the intentions of processes and the rights of localities. It is clearthat this would not be enough to take into account process migrations and the di�erentaccess rights of the di�erent localities.An obvious choice, for assigning types to a process, would be to associate with it a singlepolarity that describes all the operations the process intends to perform, while ignoringthe speci�c localities it refers to. However, in this way, we would not characterize di�erentintentions relative to di�erent localities. Associating polarities with each of the localitiesreferred to within a process would also be unsatisfactory. It hinders the possibility ofkeeping track of the capabilities of remotely executed processes, which might be di�erentfrom those of sender processes. For example, consider a process that does not have theright to access a remote tuple space (e.g. a database), but does have the right to send aprocess for remote execution at a (server) node that is willing to grant the necessary right.To take into account remote executions (migrations) of processes, we need to furtherstructure our types and to associate with each locality not just a polarity but also thetype that is required for the processes executed at that locality.A type is a �nite map that assigns pairs consisting of polarities and types to bothlocalities and locality variables. The �rst component of the pair associated with ` describesthe polarity of `, while the second describes the types of the processes executed at `.Klaim types, ranged over by �, are elements of a universe which is de�ned by thefollowing domain equation� = Fin((Loc [VLoc) 7�! (���))? :The construction of � rests on a standard construction over complete partial orders(cpo). Let hD;vDi be a cpo; then H(D) is the set of partial functions with �nite domainfrom Loc [VLoc to the cpo ��D de�ned byH(D) = Fin((Loc [VLoc) 7�! (��D))?:16

www.manaraa.com

This set of functions can be ordered via the relation vH(D) stating that the more de�nedthe partial function the smaller it is.1. ? vH(D) f , for all f 2 H(D)2. f vH(D) g when� dom(g) � dom(f), and� 8` 2 dom(g) : f(`) v��D g(`), where v��D is the obvious ordering on ��D.It is not di�cult to show that if hD;vDi is a (!{algebraic) cpo then also hH(D);vH(D)iis a (!{algebraic) cpo.Let h�;�i be the initial solution1 of the recursive domain equation for �; � is called thesubtype relation. As usual, u shall denote the greatest lower bound, and � shall denote theelement of � with empty domain. If � 2 �, then �i(`) is used to denote the i{th componentof the pair �(`), if it is de�ned; otherwise, �1(`) yields ; and �2(`) yields �. Moreover, ���#`denotes the greatest lower bound of the set f�2(`)g [f�(`0)��#` j �(`0) is de�nedg. Notation�[�1=(`) := �] denotes a type �1 such that �11(`) = �, �21(`) = � if �(`) is unde�ned,�21(`) = �2(`) otherwise, and �1(`0) = �(`0) for `0 6= `. Notation �[�1=�2(`)] has the samee�ect as a substitution (thus �[�1=�2(`)] denotes � itself if �(`) is unde�ned).The typed version of Klaim is obtained by associating a type with locality variablesand with process variables whenever they are bound. Hereafter, for the sake of simplicity,we will also call the typed version of the language Klaim.The abstract syntax of terms (processes, as usual, are closed terms) is reported inTable 7. Recall that ` stands for a generic locality or locality variable. To avoid nameclashing and thus overloading of types, we will assume that Vloc, the set of locality vari-ables, is partitioned into two subsets: NVloc, used as arguments of newloc, and TVloc,used as formals of tuples.A type is associated with process and locality parameters of process identi�ers and,as usual, it is assumed that each process identi�er A has a single de�ning equationA(eX : e�; eu : e�; ex) def= P .We are now ready to introduce the formal syntax of typed nets, whose role is to allocateand coordinate processes, and to assign access rights. The type of sites is similar to thatof processes: it associates pairs hpolarity, typei with localities and locality variables. This1The construction H on cpos may be straightforwardly turned into a functor H in the category CPOE,the category of cpos with embeddings as morphisms. The action of the functor H on cpos is de�ned as forH. If i : D � D0 is an embedding, H(i) : H(D) �! H(D0) (the action of the functor on embeddings) isobtained as: (H(i))(?) = ? (H(i))(f) = i � f:By using standard techniques, we can prove that H is a continuous and covariant functor in CPOE whichpreserves !{algebraicity [27]. Therefore, the theory in [36] ensures the existence and uniqueness in CPOEof the initial �xed point of the functor H, i.e. the initial solution of the recursive domain equation for �.17

www.manaraa.com

P ::= nil ��� a:P ��� P1 j P2 ��� P1+P2 ��� X ��� Ah eP ; è; eeia ::= out(t)@` ��� in(t)@` ��� read(t)@` ��� eval(P)@` ��� newloc(u : �)t ::= e ��� P ��� ` ��� !x ��� !X : � ��� !u : � ��� t1; t2Table 7: Typed Klaim Syntaxis declared by means of two functions, � and �. For each site s of the net, � describesthe access rights of processes located at s on the other sites of the net, while � describesthe locality variables that processes located at s may use.A net is a triple N : h�;�i where N is as de�ned in Section 2.3, and � and � havethe following structure: � : st(N) �! (st(N) �! �) and � : st(N) �! V Loc.4.2 Deriving Processes TypesThis section presents an inference system that assigns types to processes. The type systemrecords the operations that processes are willing to perform at speci�c localities and checkswhether process operations comply with the declared types of the variables.Type contexts � are functions mapping process variables and identi�ers into types.Hereafter, � will denote the empty context. The auxiliary function update, de�ned struc-turally over tuples syntax, will be used to update type contexts; it behaves like the identityfunction for all �elds but !X : �. Formally, it is de�ned by:update(�; t) = 8>><>>: update(update(�; t1); t2) if t = t1; t2�[�=X] if t = !X : �� otherwiseThe type judgments for processes take the form � j P : � where � is a type contextproviding the type of process variables and identi�ers of P . A statement such as � j P : �asserts that the capabilities of P are those in �, within the context �.The type of a process variable or identi�er is always determined by the type context, �,that has been set up by the other inference rules. De�nedness of �(X) (�(A)) is guaranteedby the fact that processes are closed terms.� j X : �(X) � j A : �(A)The simplest process (the null process) has no capability.� j nil : �
18

www.manaraa.com

The process out(t)@`:P puts the tuple t in the tuple space whose address is speci�edby ` and then behaves like P . The typing rule of the out operation� j P : �� j out(t)@`:P : �[�1(`) := �1(`) [fog]states that the type of out(t)@`:P (possibly) extends that of P at ` with capability o.Since out is not a binder, P is typed within the same context (�) as out(t)@`:P .The typing rules for read and in update the context with the types of the processvariables they bind. The second half of their premises checks whether process P does notmisuse the locality variables bound by read and in. Thus, for each locality variable uwith type �u one checks that the remote operations of P at u (���#u) really do respect �u.The resulting type is obtained by extending the type of P at ` with the correspondingcapability (r or i).update(�; t) j P : � �u � ���#u for all (!u : �u) 2 fields(t)� j read(t)@`:P : �[�1(`) := �1(`) [frg]update(�; t) j P : � �u � ���#u for all (!u : �u) 2 fields(t)� j in(t)@`:P : �[�1(`) := �1(`) [fig]where feug are all the locality variables bound by read and in.The typing rule of eval extends the type of P at ` with e and records that the remoteoperations of P have to be extended with those (�0) of the spawned process Q.� j P : � � j Q : �0� j eval(Q)@`:P : �[�1(`) := �1(`) [feg][(�2(`) u �0)=�2(`)]The typing rule for newloc extends the type of P at self with n and at u with thetype �0 declared for u, while it checks whether the operations that P is willing to performat u (�2(u)) comply with �0. � j P : � �0 � ���#u� j newloc(!u : �0):P : �[�1(self) := �1(self) [fng][�0=�2(u)]The typing rules for parallel composition and choice state that the intentions of thecomposed processes are in both cases the union, formally the greatest lower bound, ofthose of the components. The binding context is left unchanged.� j P : �1 � j Q : �2� j P+Q : �1 u �2 � j P : �1 � j Q : �2� j P j Q : �1 u �2The typing rule for process de�nition, �rst updates the type context with the typesof the process variables that occur as parameters of A and with a candidate type � for19

www.manaraa.com

A. The resulting context is exploited to infer the type � for P . Secondly, for each formallocality variable ui, one checks that the operations of P at ui (i.e. �2(ui)) match the typedeclaration �ui . Finally, the inferred type is assigned to A.�[f�X= eX][�=A] j P : � �ui � �2(ui) for all ui 2 feug� j A : �where A(eX : f�X ; eu : f�u; ex) def= P is the de�ning equation for the process identi�er A.The typing rule for process invocation, �rst determines the type of the process identi�erand those of the process arguments. It then, checks whether each of the types inferredfor the process arguments agree with the one of the corresponding formal parameter. Norequirement is imposed on the other arguments. The type of locality variables is controlledwhen one of the rules for in, read and newloc is applied. Localities are controlled whenwell{typedness of nets is checked.� j A : � � j Pi : �i and �Xi � �i for all Pi 2 f ePg� j Ah eP ; è; eei : �fè=eugwhere �fè=eug is such that �fè=eug(`i) = h�1(ui) [�1(`i); (�2(ui) u �2(`i))fè=eugi, for `i 2fèg, and �fè=eug(`0) = h�1(`0); �2(`0)fè=eugi, for `0 62 fèg such that �(`0) is de�ned. Theinferred type states that Ah eP ; è; eei intends to perform at èand eu the same operations thatAh eX; eu; exi intends to perform at eu. Indeed, statically we are unable to establish whichoccurrences of ui 2 feug in � must be replaced by `i.4.3 Typing NetsThis section presents the criteria for establishing whether a net is well{typed. The typesof the processes in a net will be required to agree with those of the sites where they arelocated. More speci�cally, the types of the processes, as determined by the type inferencesystem, are checked against those �xed by the net coordinator, taking into account whereeach process has been located.The pair of functions, � and � associate a type with each site of a net. This is thetype that is compared with the one for located processes (which expresses their expectedbehaviour) to check whether the net is well{typed.Given a net N : h�;�i, the type �s of each site s 2 st(N) is obtained as:8` 2 (dom(�s) [dom(�(s))) :�s(`) = 8>><>>: h�(s)(�s(`)); ��s(`)i if ` 2 dom(�s)hfi; o; e; ng; �si if ` 2 dom(�(s)) \NVlochfi; o; e; ng;?i if ` 2 dom(�(s)) \ TVlocNotice that, for any site s, �s is well{de�ned since, by de�nition of net, if ` 2 dom(�s)then �(s)(�s(`)) is a polarity. Namely, the �rst item of the de�nition of �s uses the20

www.manaraa.com

allocation environment �s of s to determine the site associated to `, hence its polarity andtype. The last two items deal with locality variables; the only restriction we statically puton them is that a fresh node inherits the rights of the creating one.In [17] a soundness theorem is proved, namely well{typed Klaim nets (and processes)never lead to run{time errors due to misuse of access rights. For a net be well{typed, itwill be required that the types of the processes in the net agree with the access rights of thesites where they are located. More speci�cally, the types of the processes, as derived by thetype inference system, are checked against those �xed by the net coordinator, while takinginto account where each process has been located. The soundness theorem establishes thatwell{typedness is an invariant of the operational semantics. This result is essentially avariant of standard subject reduction, that takes into account the fact that new sites canbe dynamically created. The soundness theorem and the related technicalities are notpresented here since they are not needed to appreciate the primitives and the pragmaticsof Klaim.To highlight the utility of Klaim types, let us consider a system composed of a processServer, which makes available in its local space a tuple containing locality l, and twoidentical processes Client1 and Client2, which access the tuple space at lS to read anaddress u and then send process P for execution at u.Server def= out(l)@self:nil Clienti def= read(!u)@lS :eval(P)@u:nilIf P has type �, each process Clienti, i = 1; 2, has type�c = lS 7�! hfrg; �i; u 7�! hfeg; �iSuppose now that only Client1 has the right to send processes for evaluation at thelocation denoted by u. The net coordinator can thus allocate Server on site s and thetwo processes Client on sites s1 and s2, and can give the following access rights to s1 ands2 �s1 = s 7�! hfrg; �i; u 7�! hfeg; �i �s2 = s 7�! hfrg; �iRemark 4.1 There are some similarities between types in Klaim and Telescript [41]permit and authority. The latter are used to limit the access rights of mobile agents2.The advantage of our approach is that the use of the type system makes mechanical staticveri�cations of access rights possible.Type systems have already been proposed for calculi of mobile processes, though notaddressing security issues. Here, we mention the type system proposed by Pierce andSangiorgi [34] and re�ned by Kobayashi, Pierce and Turner [28]. In [34], a type systemis developed for �-calculus [32] which uses types of channels to record information on2In Telescript an agent permit can also specify allowances of a mobile agent, e.g. the maximum lifetimein seconds, the maximum size in bytes and so on. 21

www.manaraa.com

whether channels are used to read or to write. This type system was extended in [28] byassociating multiplicities with types in order to describe how many times each channel canbe used. The main di�erence with our approach lies in the treatment of localities and,more importantly, in the role played by type information at the level of the net coordinatorto check and enforce access rights of processes.The present work shares parts of its underlying rationale with the work by Volpanoand Smith [40], though those authors only consider a sequential procedural language andthe type system is used to control a speci�c non interference security property.5 Programming Mobile Code ApplicationsIn this section we illustrate how to use Klaim to program Mobile Code Applications(MCAs). In the programming examples, we assume that natural numbers and identi�ersare basic values.MCAs are distributed applications whose distinctive feature is the exploitation of\code mobility". According to the classi�cation proposed in [14], we can single out threeparadigms, apart from the traditional client{server paradigm (CS), which are largely usedto build MCAs:� Remote Evaluation (RE). Any component of a distributed application can invokeservices from other components by transmitting both the data needed to performthe service and the code that describes how to perform the service.� Mobile Agent (MA). A process (i.e. a program and an associated state of execution)on a given node of a network can migrate to a di�erent node where it continues itsexecution from the current state.� Code On{Demand (COD). A component of a distributed application running on agiven node, can dynamically download from a di�erent component and link the codeto perform a given task.Suitable programming constructs are needed to support these approaches. Indeed,several programming languages, such as Java [3], Facile [23], Obliq [7] and Telescript [41]were designed to provide facilities for process mobility and distribution; see [14] for adetailed survey.Our aim here is to show, by means of simple programming examples, that the Klaimprogramming constructs are powerful enough to implement the programming paradigmsof MCAs.Both the CS and RE paradigms can be programmed by exploiting the
exibility ofKlaim data structures, i.e. tuples. Indeed, tuple �elds may contain both data values andprocesses (i.e. program codes). Let us now show how to program RE (which is basically22

www.manaraa.com

a CS in a language with higher order facilities like Klaim). Suppose we want to requirethat server located at location l executes (evaluates) code P where the values v1; : : : ; vnmust be assigned to variables x1; : : : ; xn. To this end, we can use the instructionout(in(!y1; : : : ; !yn)@l:Ahy1; : : : ; yni; v1; : : : ; vn)@lwhere we assume that A(x1; : : : ; xn) def= P and that the server performsin(!X; !x1; : : : ; !xn)@self:out(x1; : : : ; xn)@self:Xor a similar activity.Suppose now that we want to execute process P at a (perhaps remote) location l, theparadigm MA can be implemented by means of- the instruction eval(P)@l, if a dynamic scoping discipline for resolving locationnames is adopted,- the sequence newloc(!u):out(P)@u:in(!X)@u:eval(X)@l, otherwise.Since P is a closed term, i.e. P does not contain free variables, we can think of P asa closure hprocess;datai. Thus we have that processes migrate while taking their stateswith them.Finally, if we want to download a program code P stored in a tuple with one �eldonly (which contains P) from a (perhaps remote) location l, the COD paradigm is simplyprogrammed by means of an instruction of the form read(!X)@l.In the next three subsections we discuss three speci�c examples that take advantageof the above described facilities.5.1 Remote Procedure CallA caller process, caller, sends a request to the callee, callee, and waits for a response. Therequest, together with the name of the procedure and its actual parameters, contains thecaller's private locality where the response has to be delivered.caller = newloc(u): out(procid; e1; : : : ; en; u)@`callee:in(! y1; : : : ; ! yk)@u: hnext behaviour i.Process callee waits for an invocation, executes the related procedure and sends back theresults using the locality, passed together with the service request.callee = in(! pid; !x1; : : : ; !xn; !u)@self:(callee jh pid(x1; : : : ; xn)i:out(r1; : : : ; rk)@u:nil).
23

www.manaraa.com

When processes are allocated in a net, the local environment of caller assigns to thelocality `callee the site where callee is located. Hence, we have:N = s1 ::fs1=self;s2=lcalleeg caller k s2 ::fs2=selfg calleeA crucial role in this example is played by newloc(u) which permits a private data spaceto be created and accessed only via the variable u.5.2 Dynamic NewsgathererWe now consider remote programming. This programming discipline permits writingagents which can dynamically move over the network and can interact locally with otheragents. An agent placed by a user at the server's location can thus be decoupled from theuser and interact with the server without using the net.Consider the following scenario. User P needs additional information on a piece of datarepresented by item (item could be, for example, the title of a book whose price P wants toknow). Part of the behaviour of P depends on this information. However, there are someactivities which are independent of it. P can look for the required information in a databasedistributed over the network. We assume that at each node of the database reachable from`item contains either a tuple of the form (item; v), with the desired information, or a tupleof the form (item; `next), with the information about the next node to search for theadditional information.The user process P asks for the execution at `item (the starting point of the search,which can be chosen according to the search key item) of the agent gatherer, whichdynamically travels between nodes looking for a tuple that contains information on item.This agent takes as its parameters the research key item and a fresh locality u, whichprovides the address of the user's private tuple space where the result of the search hasto be placed. Once gatherer has been spawned, P splits its behaviour into two parallelcomponents: one waits for the additional information and the other proceeds. Thus,those activities that do not need the additional information are decoupled from the searchactivity, which might be complex and expensive.P = newloc(u):eval(gatherer(item; u))@`item:((in(!x)@u:P1)jP2)Process gatherer can match two alternative tuples. The �rst one captures the addi-tional information on item (e.g. the price). If this is found then it is placed at localityu and gatherer terminates. The second tuple is used to obtain the address of the nodewhere the search has to be repeated.gatherer(item; u) = read(item; !x)@self:out(x)@u:nil+ read(item; !u0)@self:eval(gatherer(item; u))@u0:nil24

www.manaraa.com

Our assumption about the structure of the distributed database guarantees thatgatherer never deadlocks (because either the associated information or a location wherethe search can be repeated certainly found), but it does not ensure that the search activ-ity will terminate successfully: gatherer might loop inde�nitely. This could happen if itssecond tuple, the one with location information, always �nds a match in the tuple spaces.5.3 An Electronic MarketplaceBy means of an example borrowed from [41], we illustrate now how to use Klaim toprogram mobile agents.Assume that a client (process) P wants to buy a speci�c camera, c. To decide where topurchase the camera, P activates a migrating agent A and passes the following informationto it:1. c, the make and the model of the camera chosen,2. locD, the locality of the directory of the electronic marketplace, and3. a length measure, which will be used to identify the geographical area of interest.P expects A to return the name, address and telephone number of the closest (within thechosen area) camera shop with the lowest price for c. The following could be part of thebehaviour of PP def= : : : eval(Ahc; locD ; lengthi)@self:in(c; !x; ! y)@self: : : :where x will retain the name, address and telephone number of the camera shop fromwhere to buy c at cost y.The agent A behaves as follows:1. It obtains the site where P is located, which will be used both to return the outcomeof the query and to identify the geographical area which is of interest for pricinginformation. This is done by putting a tuple containing self into a new tuple spaceu0, in order to force the evaluation of self within the local tuple space, and bywithdrawing the tuple.2. It migrates to the site of the marketplace directory and asks for (and obtains) thelist of all camera shops whose location is close to the site of P . Each item in the listcontains the name, address and telephone number of a camera shop. A function lwill return the locality information within an item.3. It visits each camera shop in turn and obtains the local price for c. The agent retainsinformation about the shop only if a lower price than that currently stored is o�ered.4. After visiting all the camera shops on the list, it sends back to the site of P theinformation about the shop that o�ers the lowest price for c. It then terminates.25

www.manaraa.com

For the sake of simplicity, in de�ning agents we use a conditional construct (which can beprogrammed by exploiting the dynamic creation of new sites and the choice operator) anda data type list (with the usual operators hd, tl and empty).A(x; u; y) def= newloc(u0):out(self)@u0:in(!u00)@u0:eval(Bhx; u00; yi)@u:nilB(x; u; y) def= out(cshop; u; y)@self:in(cshop; ! list)@self:if empty(list) then out(x; nocloseshop;�1)@u:nilelse Ihx; list; u; l(hd(list))iI(x; y; u; u000) def= eval(read(x; ! cost)@self:Rhx; y; cost; hd(y); ui)@u000:nilR(x; y; w; z; u) def= if empty(y) then out(x; z; w)@u:nilelse Chx; tl(y); w; z; u; l(hd(tl(y)))iC(x; y; w; z; u; u000) def= eval(read(x; ! cost)@self:if cost < wthen Rhx; y; cost; hd(y); uielse Rhx; y; w; z; ui)@u000:nilThe following will be part of the behaviour of each camera shop SiSi def= : : : jout(c; price(c))@self:nilj : : :Let D denote the marketplace directory process. The net could be initially structuredas follows: sP ::fsD=locDg P k sD ::fs1=cs1;:::;sn=csng D k s1 ::fg S1 k : : : k sn ::fg SnIf now we are interested in inferring the type � of P , we have that:� : rec �:(self 7�! hfo; i; e; ng; �i; u0 7�! hfo; i; e; ng; �i; locD 7�! hfeg; �0i)�0 : self 7�! hfo; ig; �i; u00 7�! hfog; �i; u000 7�! hfeg; �00i�00 : rec �:(self 7�! hfrg; �i; u00 7�! hfog; �i; u000 7�! hfeg; �i)These types state that P performs any kind of operation both at the site where it islocated (addressed by self) and at the site it dynamically creates (namely u0). More-over, when (a process activated by) P migrates to the site of the marketplace directory(addressed by locD), it performs both local out and in, remote out at u00 (to return theoutcome of the initial query), and migration to u000 (the site of a camera shop). Finally,when running at the site of a camera shop, (a process activated by) P performs localread (to read the local price for the camera c), remote out at the original site of P , andmigrations to the sites of other camera shops.26

www.manaraa.com

6 Klava: Klaim in JavaIn this section we describe the prototype implementation of Klaim. To ensure portabilityover di�erent platforms we choose Java [3] as the implementation language. Of course,here we assume a basic knowledge of Java.The implementation of Klaim in Java (JDK 1.1), called Klava [5], extends Javapackages with two new packages, Linda and Klaim.The Linda package implements standard Linda primitives. The main classes of thispackage are Tuples and TupleSpace. The class Tuples provides the methods to build andhandle tuples. The class TupleSpace provides the mechanisms to build, access and updatea tuple space. In particular, the Linda operations in, out and read are implemented asmethods of this class.The Klaim package supports the implementation of Klaim. The main classes of thispackage are Net, Node, K-Process and NodeMsg.The class Net implements Klaim coordination language, i.e. a Klaim net is an objectof this class. A net object behaves like a server and contains the code to register the sitesof a net. In the current implementation, localities are implemented as strings. Sites, onthe other hand, are Internet addresses.An object of the class Node implements a Klaim node. Hence, it encapsulates a tuplespace and a set of processes. Klaim primitives (in, read, out, eval) are implemented asmethods of this class. One of the parameters of these methods is the locality of the node.A Klaim process is an object of the class K-Process. The main method of this classis the method execute(). This method is invoked to run a process on a node, such as themethod run of the class Thread.The objects of the class NodeMsg are used to implement node communications. Amessage object contains the sender node, the receiver node, the operation code, and acontent �eld of type Object. This feature permits transmission of processes. However,the receiver node may not know the class the process belongs to. Therefore, the processmust be sent together with the corresponding .class �le. Each node has also a speci�cNodeClassLoader which performs the dynamic linkage of the class received from othernodes of the net.The main method of the class NodeClassLoader is addClassBytes which is invokedwhen a node receives a process from the net. The method addClassBytes inserts the.class �les into a local hash table. The method loadClass uses the hash table to loadthe class de�nitions of remote processes before starting their execution. Note that asimilar approach was adopted in the implementation of the AGLETS library [26]. Figure 1presents part of our Java code implementing the NodeClassLoader.To give the reader a
avour of Klava programming, we report in Figure 2 the sourcecode of the CameraClient agent of the example presented in Section 5.3.27

www.manaraa.com

public class NodeClassLoader extends ClassLoader {private Hashtable classes = new Hashtable();private Hashtable classData = new Hashtable();Node thisNode;public NodeClassLoader() {}synchronized public void addClassBytes(String className, byte classBytes[]) {if(classData.get(className) == null && classBytes != null)classData.put(className, classBytes);}:public synchronized Class loadClass(String className, boolean resolveIt)throws ClassNotFoundException {Class result;byte classData[];result = (Class)classes.get(className); /* Check local cache of classes */if (result != null) {return result;}classData = getClassBytes(className); /* Load the class from the repository */if (classData == null) {try {result = super.findSystemClass(className);return result;} catch (Exception e) {System.err.println("NodeClassLoader : " + e);e.printStackTrace();throw new ClassNotFoundException(className);}}result = defineClass(classData, 0, classData.length); /* Parse the class file */if (result == null) {throw new ClassFormatError();}if (resolveIt) {resolveClass(result);}classes.put(className, result);return result;}} Figure 1: NodeClassLoader.java28

www.manaraa.com

public class CameraClient extends K-Process {protected KString CameraMake;protected Locality MarketPlaceDir;protected KInteger distance;protected MarketPlaceAgent mAgent;public CameraClient(KString c, Locality m, KInteger d) {CameraMake = c;MarketPlaceDir = m;distance = d;}public void execute() {PhysicalLocality newLoc;PhysicalLocality KLoc = new PhysicalLocality();KString ShopName = new KString();KInteger CameraPrice = new KInteger();newLoc = (PhysicalLocality)newloc();out(self, newLoc);in(KLoc, newLoc);mAgent = new MarketPlaceAgent(CameraMake, KLoc, distance);eval(mAgent, MarketPlaceDir);in(CameraMake, ShopName, CameraPrice, self);Print(CameraMake + " at " + ShopName + " costs " + CameraPrice);}public static void main(String args[]) throws IOException {Node node;PhysicalLocality ClientLoc = new PhysicalLocality("CameraClient");KString CameraMake = new KString("CameraX");Locality MarketLoc = new PhysicalLocality("MarketPlace");KInteger distance = new KInteger(10);if (args.length > 0)ClientLoc = new PhysicalLocality(args[0]);if (args.length > 1)CameraMake = new KString(args[1]);if (args.length > 2)MarketLoc = new PhysicalLocality(args[2]);if (args.length > 3)distance = new KInteger(Integer.parseInt(args[3]));node = new NodeG("CameraClient", ClientLoc, "localhost", 9999);K-Process P = new CameraClient(CameraMake, MarketLoc, distance);node.start();node.addProcess(P);}} Figure 2: CameraClient.java29

www.manaraa.com

Remark 6.1 Java has also been used to implement a dialect of Linda called Jada [12].Jada supports a version of Linda with multiple tuple spaces. Tuple spaces are the keynotion of Jada; they are autonomous entities, distributed over the nodes of a net andidenti�ed by the internet address of the nodes where they are placed. In Jada thereis no distinction between logical and physical addresses. Processes use tuple spaces byconnecting to the nodes where they are placed and by invoking their methods. Jada doesnot support process mobility, namely the eval primitive is not implemented and processescannot be exchanged in communications.7 Concluding RemarksIn this paper we have presented a kernel programming language which supports mobile ap-plications. An operational semantics, which focuses on the coordination of mobile agents,is provided. A type system that permits one to statically detect violations of securityproperties related to capabilities and access control has been developed. Programmingexamples have been presented that illustrate how mobile applications can be expressed inKlaim. Finally, a prototype implementation in Java has been described.The Klaim type system provides a �rst step towards the ambitious goal of demon-strating that typing information can be systematically used to guarantee that well{typedprocesses enjoy security properties. We plan to extend the type system by introducing:- user{de�ned capabilities,- allowance capabilities (e.g. maximum life{time in seconds, maximum size in bytes,etc.),- multi{level security (e.g. structuring localities into levels of security), and- dynamic transmission of access rights.Klaim can also be equipped with cryptographic primitives as done in spi{calculus [1].We plan to develop observational semantics as a foundation for programming logicsand veri�cation techniques. To this end, our starting point will be the testing frameworkdeveloped for a process calculus based on Linda in [18, 37].We are currently exploring the possibility of allowing nets to communicate and moveprocesses and tuples between them. The current Klava implementation appears to bewell{suited also to program this feature, that will lead to providing Klaim and Klavawith hierarchical nets.Klaim has been implemented via Java packages, hence programmers have to adoptthe Java (object{oriented) programming discipline to use Klaim. A compiler from Klaim30

www.manaraa.com

extended with Pascal{like primitives in Klava is under development, together with theimplementation of the typed version of Klava.Acknowledgments We are grateful to Luca Cardelli and Betti Venneri for stimu-lating discussions about global programming and type systems, and to the anonymousreferees, whose useful comments helped us to improve the paper. We also thank LorenzoBettini and Emilio Tuosto for discussions about the implementation of Klaim. This workhas been partially supported by Esprit Working Groups CONFER2 and COORDINA,HCM project EXPRESS, by CNR Progetti Speciali Modelli e Metodi per la Matematicae l'Ingegneria' and Metodologie e Strumenti di Analisi, Veri�ca e Validazione di SistemiSoftware A�dabili.References[1] M. Abadi, A. Gordon, A Calculus for Cryptographic Protocols: the spi{calculus. In Proc.Fourth ACM Conference on Computer and Communications Security, 1997.[2] R. Amadio, S. Prasad. Localities and Failures. FCT&TCS 14, Proceedings (P.S. Thiagarajan,Ed.), LNCS 880, pp. 205-216, Springer, 1994.[3] K. Arnold, J. Gosling. The Java Programming Language. Addison Wesley, 1996.[4] G. Berry, G. Boudol. The chemical abstract machine. Theoretical Computer Science, 96:217-248, 1992.[5] L. Bettini. Progetto e Realizzazione di un Linguaggio di Programmazione per Codice Mobile(In Italian). Tesi di Laurea, Dipartimento di Sistemi e Informatica, Universit�a di Firenze,1998. (forthcoming)[6] G. Boudol, I. Castellani, M. Hennessy, A. Kiehn. Observing Localities. Theoretical ComputerScience, 114, 1993.[7] L. Cardelli. A language with distributed scope. Computing Systems, 8(1):27-59, MIT Press,1995.[8] L. Cardelli. Global Computation. Manuscript, 1996. (Available at URLhttp://www.luca.demon.co.uk)).[9] L. Cardelli, A. Gordon. Mobile Ambients. To appear in FoSSaCS, 1998. (Available at URLhttp://www.luca.demon.co.uk)).[10] N. Carriero, D. Gelernter. Linda in Context. Communications of the ACM, 32(4):444-458,1989.[11] N. Carriero, D. Gelernter, J. Leichter. Distributed Data Structures in Linda. Proc. of theACM Symposium on Principles of Programming Languages, ACM, New York, pp. 236-242,1986. 31

www.manaraa.com

[12] P. Ciancarini, D. Rossi. Jada: Coordination and Communication for Java agents. In MobileObject Systems: Towards the Programmable Internet (J. Vitek, C. Tschudin, eds.), LNCS1222, pp. 213-228, Springer, 1997.[13] F. Corradini, R. De Nicola. Locality Based Semantics for Process Algebras. Acta Informatica,Vol. 34, pp. 291-324, 1997.[14] G. Cugola, C. Ghezzi, G.P. Picco, G. Vigna. Analyzing Mobile Code Languages. In J. Vitekand C. Tschudin, editors, Mobile Object Systems, LNCS , Springer, 1997. (to appear)[15] R. De Nicola, G. Ferrari, R. Pugliese. Locality based Linda: programming with explicit lo-calities. TAPSOFT'97, Proceedings (M. Bidoit, M. Dauchet, Eds.), LNCS 1214, pp. 712-726,Springer, 1997.[16] R. De Nicola, G. Ferrari, R. Pugliese. Coordinating Mobile Agents via Blackboards and AccessRights. COORDINATION'97, Proceedings (D. Garlan, D. Le Metayer, Eds.), LNCS 1282, pp.220-237, Springer, 1997.[17] R. De Nicola, G. Ferrari, R. Pugliese, B. Venneri. Types for Access Control. Submitted forpublication, 1998. (Available at URL http://di.unipi.it/ giangi/papers).[18] R. De Nicola, R. Pugliese. A Process Algebra based on Linda. COORDINATION'96, Proceed-ings (P. Ciancarini, C. Hankin, Eds.), LNCS 1061, pp. 160-178, Springer, 1996.[19] C. Fournet, G. Gonthier, J.-L. L�evy, L. Maranget, D. R�emy. A Calculus of Mobile Agents.CONCUR'96, Proceedings (U. Montanari, V. Sassone, Eds.), LNCS 1119, pp. 406-421,Springer, 1996.[20] D. Gelernter. Generative Communication in Linda. ACM Transactions on Programming Lan-guages and Systems, 7(1):80-112, 1985.[21] D. Gelernter. Multiple Tuple Spaces in Linda. PARLE'89, Proceedings (G. Goos, J. Hartmanis,Eds.), LNCS 365, pp. 20-27, 1989.[22] D. Gelernter, N. Carriero, S. Chandran, et al. Parallel Programming in Linda. Proceedings ofthe Internatinal Conference on Parallel Programming, IEEE, pp. 255-263, 1985.[23] A. Giacalone, P. Mishra, S. Prasad. Facile: A symmetric integration of concurrent and func-tional programming. International Journal of Parallel Programming, 18(2), 1989.[24] M. Hennessy, H. Lin. Symbolic Bisimulations, Theoretical Computer Science, 138:353-389,1995.[25] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, 1985.[26] IBM Aglets Workbench | Home Page. URL address: http://www.trl.ibm.co.jp/aglets/,1996.[27] A. Ingolfsdottir. Semantic Models for Communicating Processes with Value{Passing. Ph.D.Thesis, University of Edinburgh, 1994.[28] N. Kobayashi, B. Pierce and D. Turner. Linearity and the �-calculus. In Proc. POPL'96, 1996.32

www.manaraa.com

[29] J. Leitcher. Shared Memories, Buses and LANs | Linda Implementations Across theSpectrum of Connectivity. Dep. of Computer Science, Yale Univ., Research ReportYALEU/DCS/TR-714, 1989.[30] R. Milner. Communication and Concurrency. Prentice Hall International, 1989.[31] R. Milner, The Polyadic �-calculus: a Tutorial, Technical Report, ECS-LFCS-91-180, 1991[32] R. Milner, J. Parrow, D. Walker. A calculus of mobile processes, (Part I and II). Informationand Computation, 100:1-77, 1992.[33] B. Pierce, D. Turner. Concurrent Objects in a Process Calculus. Theory and Practice ofParallel Programming (T. Ito, A. Yonezawa, Eds.), LNCS 907, pp. 186-215, 1994.[34] B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Proc. LICS'93, IEEE-Press, 1993 (full version in Mathematical Struct. in Comp. Science)[35] G.D. Plotkin. A Structural Approach to Operational Semantics. Tech.Rep. DAIMI FN-19,Aarhus University, Dep. of Computer Science, 1981.[36] G.D. Plotkin. Lectures notes in domain theory. University of Edinburgh, 1983.[37] R. Pugliese. Semantic Theories for Asynchronous Languages. Ph.D. Thesis VIII-96-6, Univ.di Roma \La Sapienza", Dip. Scienze dell'Informazione, 1996.[38] J. Reppy. Higher Order Concurrency. Ph.D. Thesis, Cornell University, Tr-92-1285, 1992.[39] B. Thomsen, L. Leth, A. Giacalone. Some Issues in the Semantics of Facile Distributed Pro-gramming. REX Workshop \Semantics: Foundations and Applications" (J.W. de Bakker,W-P. de Roever, G. Rezenberg), LNCS 666, pp. 563-593, Springer, 1992.[40] D. Volpano, G. Smith. A typed-based approach to program security. Proc. TAPSOFT'97,LNCS 1214, pp.607-621, Springer, 1997.[41] J.E. White. Mobile Agents. In Software Agents (J.M. Bradshaw, Ed.), pp. 437-471, 1996.

33

